

Engineering Computation

The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

A fundamental course on the followings topics will be required:

- Linear algebra with linear vector spaces, matrix notation, linear equations, analytic geometry.
- Calculus with functions of one and several variables, differentiation and integration, basic concepts on differential equations and elementary numerical methods.
- Some computer programming experience in Matlab or similar environments.

Strength of Materials

The student should be familiar with basic mathematical and mechanical tools:

- Mathematics: differential and integral calculus
- Physics (Mechanics): vector analysis, rigid body statics, center of mass and gravity. Moments of inertia.

Introduction to Geotechnical Engineering

The student should be familiar with basic mathematical and mechanical tools: differential and integral calculus, and differential equations, that are taught to students in the first years of engineering schools.

A fundamental course on the followings topics will be required:

- Linear algebra
- Calculus
- Physics
- Mechanics
- Geology (desirable)

The student must have basic understanding of the basic and fundamental concepts of the following topics:

- Basic integral and differential calculus, vector notation and operation, ordinary differential equations
- Principles of statics force and moment equilibrium
- Basic continuum mechanics: concepts of stress and strain
- Basic fluid mechanics: concepts of fluid pressure, hydraulic head.

Fluid Mechanics

The student should be familiar with basic mathematical tools: differential and integral calculus, differential equations, statistical concepts that are taught to students in the first years of engineering schools.

A fundamental course on the followings topics will be required:

- Linear algebra
- Calculus
- Physics
- Mechanics

The student must have basic understanding of the basic and fundamental concepts of the following topics:

- Basic integral and differential calculus, vector notation and operation, ordinary differential equations
- Principles of statics force and moment equilibrium
- Principles of kinematics velocity and acceleration in absolute and relative frames
- Principles of dynamics Newton's Laws of Motion, torque and angular acceleration, 1st Law of Thermodynamics

Coastal Engineering

The student should be familiar with basic mathematical concepts on differential equations and should have a sound mathematical background on statistics and fluid mechanics.

A fundamental course on the followings topics will be required:

- Statistics
- Calculus
- Physics
- Fluid Mechanics

The student must have basic understanding of the basic and fundamental concepts of the following topics:

- Basic integral and differential calculus, ordinary differential equations
- Principles of kinematics velocity and acceleration in absolute and relative frames
- Principles of dynamics Newton's Laws of Motion.
- Probability density functions, Cumulative distribution function, Return period
- Navier-Stokes equations

Structural Analysis

A course on Strength of Materials must be required.

Geotechnical Engineering: Foundations, excavations and tunnels

The student should be familiar with basic mathematical and mechanical tools: differential and integral calculus, and differential equations, that are taught to students in the first years of engineering schools.

A fundamental course on the followings topics will be required:

- Linear algebra
- Calculus
- Physics
- Mechanics
- Geology (desirable)

The student must have basic understanding of the basic and fundamental concepts of the following topics:

- Basic integral and differential calculus, vector notation and operation, ordinary differential equations
- Principles of statics force and moment equilibrium
- Basic continuum mechanics: concepts of stress and strain
- Basic fluid mechanics: concepts of fluid pressure, hydraulic head.

Mechanical Properties of Materials

The student should be familiar with elementary mathematical tools: differential and integral calculus, differential equations, matrix notation.

A fundamental course of Physics / Mechanics will be required:

The student must have basic understanding of fundamental concepts of the following topics:

- Integral and differential calculus, vector notation and operation, ordinary differential equations.
- Principles of statics force and moment equilibrium
- Principles of dynamics Newton's Laws of Motion.
- Notions of structural analysis: equilibrium, compatibility, elastic behaviour (Hooke's Law).

Uncertainty Analysis Engineering

The student should primarily be familiar with first-year calculus. Knowledge of first-year algebra, geometry and computing and a little of multivariate calculus is also useful.

Hydrology

The student should be familiar with basic tools in Statistics, Physics Hydrogeology and differential and integral calculus.

Construction of Civil Infrastructure

The students have to command the competences needed to face the 2^{nd} semester of 2^{nd} year of the Degree in Civil Engineering of the ETSICCP at Santander.

The student should be familiar with basic civil engineering concepts that will be developed during the course: types of civil infrastructures, machinery used in civil engineering, construction procedures and management systems in construction engineering.

Energy Systems

The student should be familiar with basic mathematical tools: differential and integral calculus and differential equations concepts that are taught to students in the first years of engineering schools.

A fundamental course on the followings topics will be required:

- Linear algebra.
- Calculus.
- Physics.

The student must have basic understanding of the following topics:

- Basic integral and differential calculus, vector notation and operation, ordinary differential equations.
- Electromagnetism.

Environmental Engineering

The student should have a basic knowledge of mathematics, physics and chemistry at the level of the first years of engineering schools. Basic courses on the following topics will be required:

- Linear algebra and geometry
- Calculus
- Physics

The student must understand and use the following topics:

- Basic geometry (calculation of volume, area, perimeter), ordinary differential equations, basic differential and integral calculus
- Newton's laws of motion
- Law of conservation of mass
- Bernoulli's principle

Heat Transfer

The student should be familiar with basic mathematical tools: differential and integral calculus, differential equations concepts that are taught to students in the first years of engineering schools.

A fundamental course on the followings topics will be required:

- Calculus
- Physics
- Thermodynamics
- Mechanics

The student must have basic understanding of the basic and fundamental concepts of the following topics:

- Basic integral and differential calculus, vector notation and operation, ordinary differential equations.
- Principles of statics force and moment equilibrium.
- Principles of dynamics Newton's Laws of Motion.
- Principles of Thermodynamics and mechanisms of heat transfer