
Melatonin modulates aromatase activity in MCF-7 human breast
cancer cells

Introduction

Melatonin, the main secretory product of the pineal
hormone, is an indoleamine secreted during darkness in
mammals including humans [1]. This indoleamine acts as a
regulator of neoplastic cell growth, particularly on endo-

crine-responsive breast cancer [see reviews 2–5]. In this
concern, the most common conclusion is that melatonin, in
vivo, reduces the incidence and growth of chemically

induced mammary tumors in rodents [4]. In vitro, melato-
nin, at concentrations corresponding to the physiological
levels present in human blood during the night, inhibits

proliferation, increases expression of p53 and reduces the
invasiveness of the estrogen-responsive MCF-7 human
breast cancer cells [4–10]. Although different hypotheses,
including the melatonin immunomodulatory actions [11],

its antioxidative effects [12], or inhibition of telomerase
activity [13] have been postulated to explain the oncostatic
properties of melatonin, the effects of this indoleamine on

mammary cancer have been mostly considered as a conse-
quence of its antiestrogenic actions. However, the precise
mechanisms by which melatonin interferes with estrogen-

signaling pathways is only partially understood [5].

Estrogens are the most important endocrine influence
identified for the development and mitogenic stimulation of
breast cancer [14]. While the ovaries are the principal source
of systemic estrogen in the premenopausal nonpregnant

woman, other sites of estrogen biosynthesis are present
throughout the body and these become the major sources of
estrogen after menopause [15]. The biosynthesis of estro-

gens in peripheral tissues depends on the activity of an
enzymatic complex, the cytochrome P450 aromatase and
NADPH-cytochrome P450 reductase, which catalyzes the

conversion of androgens to estrogens. The high incidence of
breast cancer in postmenopausal women suggests that local
estrogen synthesis due to the aromatization of androgen in

breast tissue plays an important role in the pathogenesis of
estrogen-dependent breast cancer [16]. The aromatase
activity in breast cancer tissue has been demonstrated to
be higher than in nonmalignant breast tissue or tissue distal

to tumors, thus leading to the hypothesis that an increased
production of estrogens within breast tumors may exert a
biological effect and thereby stimulate tumor growth in

postmenopausal patients [15, 16]. Therefore, effective inhi-
bition of breast aromatase might be an important modu-
lator of estrogen production in breast cancer cells [17, 18].
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In the in vivo and in vitro studies relating melatonin with
tumor growth, estradiol reaches the tumor tissue from
sources different from the mammary gland tissue (ovaries in

in vivo models and estradiol added to the culture medium
in in vitro models) [3, 4]. However, there were no studies
focusing on the possible effects of this indoleamine on the
local synthesis of estrogens. The MCF-7 human breast

cancer cells are a good model to study the possible effects of
melatonin on the local synthesis of estrogens because it is a
well-established estrogen-dependent cell line, in which the

cells possess aromatase activity [19] as well as melatonin
receptors [20, 21]. The objective of the present work is to
test whether melatonin inhibits aromatase activity of MCF-

7 cells.

Material and methods

Cells and culture conditions

The MCF-7 human breast cancer cells were purchased from

the American Tissue Culture Collection (Rockville, MD,
USA). They were maintained as monolayer cultures in
75 cm2 plastic culture flasks in Dulbecco’s Modified Eagle’s

Medium (DMEM) (Sigma Chemical Co., St Louis, MO,
USA) supplemented with 5% fetal bovine serum (FBS)
(Gibco, Cergy Pontoise, France), penicillin (20 U/mL) and

streptomycin (20 lg/mL) (Sigma), at 37�C in a humid
atmosphere containing 5% CO2. Cells were subcultured
every 3–4 days by suspension in 5 mm Na2-EDTA in PBS
(pH 7.4) at 37�C for 5 min.

Before each experiment, stock subconfluent monolayers
(80%) ofMCF-7 cells were incubatedwith 5 mmNa2-EDTA
in PBS (pH 7.4) at 37�C for 5 min, resuspended in DMEM

supplemented with 5%FBS and passed repeatedly through a
25-gauge needle to produce a single cell suspension. Cell
number and viability were determined by staining a small

volume of cell suspension with 0.4% trypan blue saline
solution and examining the cells in a hemocytometer.

Indirect measurement of aromatase activity

Indirect evidence of aromatase activity of estrogen-depend-
ent cells, such as the MCF-7, can be obtained by evaluating

cell proliferation in estrogen-free media in the presence of
testosterone. Under these conditions, cell growth depends
on the biotransformation of androgens to estrogens via the

aromatase activity of the cells [22, 23]. To test this, MCF-7
cells were seeded into 96-well culture plates at a density of
8000 cells per well, in DMEM supplemented with 5% FBS,

penicillin (20 U/mL) and streptomycin (20 lg/mL), at 37�C
in a humid atmosphere containing 5% CO2. After 48 hr of
incubation to allow a correct attachment of the cells, media
were changed to ones supplemented with 5% charcoal-

stripped FBS (sFBS) containing either testosterone (Sigma-
Aldrich Quı́mica S.A., Madrid, Spain) (1 lM), melatonin
(Sigma-Aldrich) (1 nm), the aromatase inhibitor amino-

glutethimide (Sigma-Aldrich) (100 lm), or the diluent of
these drugs (ethanol, at final concentration lower than
0.0001% per plate). Cell proliferation was assessed at 3 and

5 days of culture, by using the MTT [3(4,5dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide] method, reading

absorbance at 570 nm in a microplate reader. MTT was
obtained from Molecular Probes Inc. (Eugene, OR, USA).
In a previous experiment carried out to assess that the

proliferation of the MCF-7 cells incubated with testoster-
one was estrogen dependent rather than androgen depend-
ent, MCF-7 cells were seeded as indicated and incubated in
the presence of testosterone (10 lm or 10 nm) in combina-

tion with an antiestrogen (1 lm to 10 nm tamoxifen)
(Sigma-Aldrich) or an androgen receptor inhibitor (10 lm
to 100 nm cyproterone acetate) (Sigma-Aldrich). Cell pro-

liferation was measured after 3 and 5 days of culture.

Direct measurement of cellular aromatase activity

Aromatase activity in MCF-7 cells was measured by the
tritiated water release assay, based on the formation of
tritiated water during aromatization of a labeled androgenic

substrate such as [1b-3H(N)]-androst-4-ene-3,17-dione [24].
MCF-7 cells were seeded onto 60 · 15 mm tissue culture
dishes (1.5 · 106 cells per dish) inDMEMsupplementedwith

5% FBS, penicillin (20 U/mL) and streptomycin (20 lg/
mL). When a homogeneous monolayer of preconfluent
MCF-7 cells was reached on days 2–3 of the experiment,

media were aspirated and replaced by fresh media (1 mL per
plate) supplemented with 5% sFBS and containing 100 nm
[1b-3H(N)]-androst-4-ene-3,17-dione (NEN Life Science

Products, Boston,MA,USA) (25–30 Ci/mm) in the presence
of melatonin (10 lm, 1 nm or 0.1 pm) or the diluent (ethanol
at a final concentration lower than 0.0001%). In other
experiments cAMP (100 nm), cortisol (100 nm) and melato-

nin (1 nm) were combined to assess whether melatonin
reversed the aromatase activity induced by cAMPor cortisol.
In all cases, at 24 hr of incubation, the culture dishes were

placed on ice for 15 min to condense anywater vapor and the
media were transferred to tubes containing 0.25 ml ice-cold
30% trichloroacetic acid (w/v), vortexed and centrifuged at

1700 g for 20 min. The supernatants were extracted with
chloroform, vortexed, set at room temperature for 10 min
and then centrifuged at 1700 g for 20 min. The resulting
aqueous supernatants were adsorbed with 10% dextran-

coated charcoal, vortexed, centrifuged at 1700 g for 20 min
and the supernatant added to vials with scintillation cocktail
and counted in a beta counter. The amount of radioactivity in

water [3H] measured was corrected by subtracting the blank
values from each sample, obtained by incubating dishes
containing medium with the tritiated androgen but no cells.

The values were also corrected by taking into account the
fractional retention of tritium in medium water throughout
the procedure of incubation and processing, utilizing parallel

dishes containingmediumplus known amounts of [3H] water
(NEN Life Science Products) through incubation and assay.
The fractional retention of tritium inmediumwater through-
out the incubation and processing of samples was always

higher than 87%.

Measurement of aromatase mRNA

Analysis of the aromatase mRNA was carried out by
reverse transcription PCR (RT-PCR) in MCF-7 cells. The

total cellular RNA was purified with the AurumTM Total
RNA Mini Kit (Bio-Rad Laboratories Inc., Hercules, CA,
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USA) following the manufacturer’s instructions. Integrity
of RNA was assessed by electrophoresis in ethidium
bromide-stained 1.2% agarose-Tris-borate-EDTA gels.

The absorbance ratio A260 nm/A280 nm was greater than
1.8. For cDNA synthesis, 0.5 lg of total RNA were
denaturated at 70�C for 10 min and reverse transcribed
50 min at 37�C with M-MLV Reverse Transcriptase

(Invitrogen, Carlsbad, CA, USA) in a final volume of
20 lL in the presence of 500 ng of oligo (dT)12–18 primer.
The PCR was performed using a set of human aroma-

tase-specific primers [5¢-CAAGGTTATTTGATGCATGG
(forward primer) and 5¢TTCTAAGGCTTTGCGCAT-
GAC (reverse primer)] (Sigma Genosys Ltd, Cambridge,

UK). The coding sequence between the two PCR primer
sites is interrupted by three introns in the gene. As a control
quantification, GADPH mRNA was also carried out by
RT-PCR using a set of specific primers [5¢CCACCCAGG-

CAAATTCCATGGCA (forward primer) and 5¢-TCTAG-
ACGGCAGGTCAGGTCCACC (reverse primer)].
The PCRs were performed for 34 cycles for semiquan-

titative analysis using the following temperature profile:
55�C, 45 s (annealing); 72�C, 90 s (extension); and 95�C,
45 s (denaturation). Each product was electrophoresed on

ethidium bromide-stained 1.5% agarose-Tris-borate gels.

Statistics

The data on cell proliferation or aromatase activity are
expressed as the mean ± S.E.M. Statistical differences
between groups were processed by one-way analysis of

variance (ANOVA) followed, when appropriate, by the
Student–Newman–Keuls test.

Results

Proliferation of MCF-7 cells incubated for 3 or 5 days with

sFBS in the presence of 1 lm or 10 nm testosterone was
blocked in a dose-dependent manner by the simultaneous
administration of tamoxifen and was almost completely
abolished by 1 lm of this antiestrogenic drug (P < 0.001).

On the other hand, the stimulatory effects of testosterone
on cell proliferation was not reduced by simultaneous
addition of 10 lm or 100 nm cyproterone acetate, an

inhibitor of the androgens receptor (Fig. 1; only results at
5 days of culture have been presented). These results
suggest that the stimulatory effects of testosterone on cell

proliferation are not mediated via androgenic receptors, but
via estrogenic receptors.
As expected, testosterone increased proliferation of

MCF-7 cells cultured for 5 days in media with sFBS
(Fig. 2). This stimulatory effect was reduced (P < 0.001)
by the aromatase inhibitor aminoglutethimide, thus
indicating that, at least in part, cell proliferation was

dependent on the formation of estrogens from testosterone
by the aromatase activity of the cells. Melatonin (1 nm) was
able to counteract the stimulatory effect of testosterone

similar to aminoglutethimine, thus suggesting that it also
exerts inhibitory effects on aromatase. The aromatase
inhibitor effects of aminoglutethimide and melatonin were

not additive, as coincubation of the MCF7 cells with both
agents counteracted the testosterone-induced cell prolifer-

ation to a similar level as to when cells were incubated with
the drugs individually (Fig. 2). Melatonin alone has only a
weak (not significant) antiproliferative effect, as would be

expected due the nature of the culture media in which the
concentration of estrogens is almost indetectable.
The aromatase activity of MCF-7 incubated for 24 hr

with tritiated androstenedione was estimated by the for-

mation of tritiated water. Fig. 3 shows that melatonin at
physiological (1 nm) or pharmacological (10 lm) doses,
significantly (P < 0.001) decreases aromatase activity of

MCF-7 cells. Melatonin also decreased the aromatase
activity induced by cAMP (100 nm) or cortisol (100 nm),
two well-known inducers of aromatase expression (Fig. 4).

As shown above, melatonin significantly decreases aro-
matase activity of MCF-7 cells. With the aim of determin-
ing whether this inhibitory effect over aromatase activity
was due to a downregulation of the aromatase expression at

the transcriptional level, we then incubated MCF-7 cells
with either 1 nm melatonin or vehicle for 90 min and total
RNA was isolated to perform semiquantitative RT-PCR

with primers specific for human aromatase. As a control,
the same samples were subjected to RT-PCR with primers
specific for GADPH. Samples were taken between 27 and

34 cycles, in such a way that a linear relationship between
PCR products and amplification cycles was observed.
Fig. 5 shows a representative experiment repeated four

times with similar results. Melatonin treatment inhibits
aromatase mRNA expression in these cells. The densito-
metric analysis of the chromatographic bands (Fig. 5,
bottom) illustrates the magnitude of the downregulation

of aromatase expression induced by melatonin.

Discussion

The importance of estrogens in the development of breast
cancer is supported by numerous experimental and epide-

miological studies [14]. Most hypotheses consider that
estrogen binding to ERa or ERb stimulate cell prolifer-
ation, thus increasing the possibility of errors in DNA
replication resulting in point mutations [25]. However,

direct genotoxic effects of some estradiol metabolites could
also explain the estrogen-induced carcinogenesis [26]. At
this moment, the two main strategies for the design of

anticancer drugs with estrogens as their target are based on
either the blockade of the ER (antiestrogens) or the
inhibition of estrogen synthesis (aromatase inhibitors) [27].

Ovaries constitute the main site of estrogen synthesis in
the premenopausal nonpregnant woman. However, there
are other local sources in some tissues, including mammary

tissue, which acquires a special importance after menopause
[15]. In these tissues, estrogens are produced mainly
through aromatization of adrenal androgen precursors
(androstenedione and testosterone) and reach tissue con-

centrations higher than in plasma [16].
Melatonin, the main secretory product of the pineal

gland [1], exerts oncostatic effects on breast cancer, as

described from in vivo and in vitro studies [2–5]. Much of
the current knowledge about the mechanisms by which
melatonin inhibits tumor cell growth points to an interac-

tion of melatonin with estrogen-responsive pathways,
thus behaving as an antiestrogenic hormone [5, 28–30].
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However, a possible effect of melatonin on the local

synthesis of estrogens had not been studied.
The present study demonstrates that melatonin, at

physiological (1 nm) and pharmacological (10 lm) con-

centration, reduces the synthesis of estrogens in MCF-7
cells, through the inhibition of aromatase, the enzyme that
catalyzes the rate-limiting step in the conversion of

androgens to estrogens [19]. These results are supported
by three types of experiments. In the first experimental
series, we demonstrate that melatonin counteracts the

growth stimulatory effects of testosterone on MCF-7 cells.
As testosterone stimulates the proliferation of the MCF-7
cells through its transformation in estrogens which bind to

the ER [17, 22, 23], the inhibitory effects of melatonin on
the testosterone-induced cell proliferation could be due to
the blockade of the formation of estrogens from the

androgens.

Fig. 1. Effects of tamoxifen (1 lm, 100
and 10 nm) and cyproterone acetate (10,
1 lm and 100 nm) on androgen induced of
proliferation of MCF-7 cells. Cells were
seeded into 96-well culture plates (8000
cells per well) in medium supplemented
with FBS for 48 hr and subsequently for
5 days in medium supplemented with
sFBS containing testosterone (1 lm or
10 nm) and the indicated concentrations
of tamoxifen or cyproterone acetate. Data
are expressed as the percentage of the
control group (mean ± S.E.M.). a,
P < 0.001 versus control; b, P < 0.001
versus 1 lm testosterone; c, P < 0.001
versus 10 nm testosterone; d, P < 0.05
versus 10 nm testosterone.

Fig. 2. Effects of 1 lm testosterone (T), 1 nm melatonin (M),
100 lm aminoglutethimide (A), or the diluent of these drugs (eth-
anol 0.0001%) (C), on MCF-7 cell proliferation. Cells were seeded
into 96-well culture plates (8000 cells per well) in medium supple-
mented with FBS for 48 hr and subsequently for 5 days in medium
supplemented with sFBS containing the above-mentioned drugs.
Data are expressed as the percentage of the control group
(mean ± S.E.M.). a, P < 0.001 versus C; b, P < 0.001 versus T;
c, P < 0.001 versus A; d, P < 0.001 versus M; e, P < 0.01 versus
TA; f, P < 0.01 versus TM.

Fig. 3. Effects of melatonin (10 lm, 1 nm or 0.1 pm) or the diluent
(ethanol at 0.0001% final concentration) on basal aromatase
activity of MCF-7 cells. Cells were seeded onto 60 · 15 mm dishes
(1.5 · 106 cells per dish) in DMEM supplemented with 5% FBS for
2–3 days. Then, media were aspirated and replaced by fresh media
supplemented with 5% sFBS and containing tritiated androsten-
edione and the indicated concentrations of melatonin. Aromatase
activity was determined after 24 hr of incubation, as described in
material and methods. Data are expressed as the percentage of the
control group (mean ± S.E.M.). a, P < 0.05 versus control; b,
P < 0.001 versus control.
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In a second series of experiments, we directly measured
the aromatase activity of MCF-7 cells by quantification

of the tritiated water released during the aromatization of
a radiolabeled substrate ([1b-3H(N)]-androst-4-ene-3,17-
dione) [24]. We found (Figs 3 and 4) that melatonin

reduced aromatase activity of MCF-7 cells both under
basal conditions as well as when aromatase activity was
stimulated by adding cAMP or cortisol [31] to culture

media. The greatest inhibition of the aromatase activity
of MCF-7 cells was found when melatonin was added at
physiological concentrations (1 nm), the same concentra-

tion that cause the greatest antiproliferative and anti-
invasive effects in these cells [3, 4, 9, 32].
Finally, we evaluated the expression of aromatase at

transcriptional level in the MCF-7 cells and its possible

modulation by melatonin. For this purpose mRNA was
measured by a semiquantitative RT-PCR and, as shown in
Fig. 5, a remarkable decrease in mRNA aromatase was

induced by incubation with 1 nm melatonin concentration.

To our knowledge this is the first time a relationship
between melatonin and aromatase activity in tumor cells

has been clearly established. A limited number of earlier
studies had suggested the possible modulatory role of
melatonin on the aromatase activity, but mainly related to

the function of the neuroendocrine-gonadal axis and with
controversial results. Thus, no consistent effect of melato-
nin on aromatase activity was described in human or
bovine granulose cells cultured in a serum-supplemented

medium [33]. Other authors attributed the low sperm
quality of human seminal plasma to a low aromatase
activity dependent on high endogenous melatonin levels

[34] or long-term melatonin administration [35]. Finally, a
reduction of the aromatase activity in the hypothalamic-
preoptic area of adult male Syrian hamsters chronically

treated with melatonin, has been described [36] but consid-
ered secondary to the decreased circulating levels of
testosterone.

Whereas in normal mammary glands the aromatase gene
(CYP19) predominantly contains the I.4 promoter, under
the tonic control of glucocorticoids, in mammary cancer
cells CYP19 genes contain promoters II and I.3 regulated

by cAMP [37–39]. Consequently, cAMP activates the
transcription of aromatase promoters containing cAMP
responsive elements while agents able to decrease cAMP

could also decrease aromatase activity. Melatonin, through
a membrane-bound Gi protein-coupled MT1 receptor, is
reported to downregulate cAMP levels in a variety of cell

types [40–42]. In MCF-7 cells, melatonin at concentrations
of 10 nm or 1 lm, reduced the forskolin-induced increase of
intracellular cAMP [42]. Our group [43] had previously

demonstrated that melatonin induced changes in cyclic
nucleotide synthesis in murine mammary glands. These
changes consisted of a decrease in cAMP and an increase in
cGMP accumulation, both responses being dose- and time

dependent [43]. Thus, cAMP may be the link between

Fig. 4. Effects of 1 nm melatonin on cAMP or cortisol-induced
aromatase activity in MCF-7 cells. Cells were seeded onto
60 · 15 mm dishes (1.5 · 106 cells per dish) in FBS supplemented
DMEM for 2–3 days and subsequently for 24 hr in medium sup-
plemented with sFBS containing the tritiated androstenedione and
cAMP (100 nm) or cortisol (100 nm) in the absence or presence of
melatonin (1 nm). Data are expressed as the percentage of the
control group (mean ± S.E.M.). a, P < 0.001 versus control; b,
P < 0.001 versus 100 nm cAMP; c, P < 0.01 versus 100 nm
cortisol.

Fig. 5. Effects of melatonin on the expression of aromatase mRNA
in MCF-7 cells. Cells were incubated with melatonin (1 nm) or
ethanol (0.0001%) (control) for 90 min. Total mRNA was isolated
from MCF-7 cells and reverse transcribed. cDNA was subjected to
PCR using specific primers for P450 aromatase or GADPH. The
results of a representative experiment (chromatogram and densi-
tometric analysis) are shown.
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melatonin and aromatase activity in human breast cancer
cells. There is one more possible explanation for the effects
of melatonin on aromatase activity. In MCF-7 cells,

aromatase activity is stimulated by epidermal growth factor
and transforming growth factor-a [31], both of which have
been demonstrated to be downregulated by physiological
concentrations of melatonin [7, 44, 45]. These findings give

rise to the speculation that the mitogenic activity of growth
factors may be associated with the modulation of aroma-
tase activity in hormone-dependent human breast cancer

cells and melatonin’s ability to modulate the synthesis of
estrogen-induced growth factors as well as to alter their
capacity to act on their cellular targets, may be related to

the ability of this indoleamine to modulate aromatase
activity and expression.

Therein, we further clarify the well-known properties of
melatonin as an antiestrogenic compound able to interact

with the ER in breast cancer cells [5] by documenting its
ability to reduce the expression of aromatase in these cells
and, consequently, to reduce the local synthesis of estrogens.

As breast cancer occurs in regions of the mammary gland
with the highest levels of aromatase expression [15], the
inhibition of aromatase activity and expression bymelatonin

may be an important mechanism in the ability of this
indoleamine to control tumor growth. The coexistence of
anti-estrogenic and aromatase-inhibitory properties in the

same molecule points to melatonin as an interesting candi-
date for the treatment and prevention of mammary cancer.
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